A Markov Random Field Image Segmentation Model Using Combined Color and Texture Features
نویسندگان
چکیده
In this paper, we propose a Markov random field (MRF) image segmentation model which aims at combining color and texture features. The theoretical framework relies on Bayesian estimation associated with combinatorial optimization (Simulated Annealing). The segmentation is obtained by classifying the pixels into different pixel classes. These classes are represented by multi-variate Gaussian distributions. Thus, the only hypothesis about the nature of the features is that an additive white noise model is suitable to describe the feature values belonging to a given class. Herein, we use the perceptually uniform CIE-L∗u∗v∗ color values as color features and a set of Gabor filters as texture features. We provide experimental results that illustrate the performance of our method on both synthetic and natural color images. Due to the local nature of our MRF model, the algorithm can be highly parallelized.
منابع مشابه
Unsupervised Texture Image Segmentation Using MRFEM Framework
Texture image analysis is one of the most important working realms of image processing in medical sciences and industry. Up to present, different approaches have been proposed for segmentation of texture images. In this paper, we offered unsupervised texture image segmentation based on Markov Random Field (MRF) model. First, we used Gabor filter with different parameters’ (frequency, orientatio...
متن کاملUnsupervised Texture Image Segmentation Using MRFEM Framework
Texture image analysis is one of the most important working realms of image processing in medical sciences and industry. Up to present, different approaches have been proposed for segmentation of texture images. In this paper, we offered unsupervised texture image segmentation based on Markov Random Field (MRF) model. First, we used Gabor filter with different parameters’ (frequency, orientatio...
متن کاملUnsupervised segmentation of color textured images using a multilayer MRF model
Herein, we propose a novel multi-layer Markov random field (MRF) image segmentation model which aims at combining color and texture features: Each feature is associated to a so called feature layer, where an MRF model is defined using only the corresponding feature. A special layer is assigned to the combined MRF model. This layer interacts with each feature layer and provides the segmentation ...
متن کاملMulticue MRF Image Segmentation: Combining Texture and Color Features
Herein, we propose a new Markov random field (MRF) image segmentation model which aims at combining color and texture features. The model has a multi-layer structure: Each feature has its own layer, called feature layer, where an MRF model is defined using only the corresponding feature. A special layer is assigned to the combined MRF model. This layer interacts with each feature layer and prov...
متن کاملCluster-Based Image Segmentation Using Fuzzy Markov Random Field
Image segmentation is an important task in image processing and computer vision which attract many researchers attention. There are a couple of information sets pixels in an image: statistical and structural information which refer to the feature value of pixel data and local correlation of pixel data, respectively. Markov random field (MRF) is a tool for modeling statistical and structural inf...
متن کامل